A MULTIPROCESSOR ARCHITECTURE FOR SOLVING NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS * C. SIVA RAM MURTHY and V. RAJARAMAN
نویسندگان
چکیده
This paper presents the architecture of a special-purpose multiprocessor system, which we call the Broadcast Cube System (BCS), for solving non-linear Partial Differential Equations (PDEs). The BCS has the following important features: (a) Being based on the conceptually simple bus interconnection scheme it is easily understood. The use of homogeneous Processing Elements (PEs) which can be realized as standard VLSI chips makes the hardware less costly. (b) The interconnection network is simple and regular. The network can easily be extended to vast number of PEs by adding buses with new PEs on them and by slightly increasing the number of PEs on existing buses. The interconnection pattern is highly redundant to support fault tolerance in the event of PE failures. (c) In terms of the switching delays, the delay a message undergoes between a pair of PEs connected to a common bus is zero. The maximum delay between any pair of PEs is one unit and thus a strong localization of communicating tasks is not needed to avoid long message delays even in networks of thousands of PEs. The effectiveness of the BCS has been demonstrated by both analytical and simulation methods using heat transfer and fluid flow simulation, which requires solution of non-linear PDEs, as a benchmark program.
منابع مشابه
Homotopy Perturbation Method and Aboodh Transform for Solving Nonlinear Partial Differential Equations
Here, a new method called Aboodh transform homotopy perturbation method(ATHPM) is used to solve nonlinear partial dierential equations, we presenta reliable combination of homotopy perturbation method and Aboodh transformto investigate some nonlinear partial dierential equations. The nonlinearterms can be handled by the use of homotopy perturbation method. The resultsshow the eciency of this me...
متن کاملA numerical method for solving nonlinear partial differential equations based on Sinc-Galerkin method
In this paper, we consider two dimensional nonlinear elliptic equations of the form $ -{rm div}(a(u,nabla u)) = f $. Then, in order to solve these equations on rectangular domains, we propose a numerical method based on Sinc-Galerkin method. Finally, the presented method is tested on some examples. Numerical results show the accuracy and reliability of the proposed method.
متن کاملSolving nonlinear space-time fractional differential equations via ansatz method
In this paper, the fractional partial differential equations are defined by modified Riemann-Liouville fractional derivative. With the help of fractional derivative and fractional complex transform, these equations can be converted into the nonlinear ordinary differential equations. By using solitay wave ansatz method, we find exact analytical solutions of the space-time fractional Zakharov Kuz...
متن کاملA new fractional sub-equation method for solving the space-time fractional differential equations in mathematical physics
In this paper, a new fractional sub-equation method is proposed for finding exact solutions of fractional partial differential equations (FPDEs) in the sense of modified Riemann-Liouville derivative. With the aid of symbolic computation, we choose the space-time fractional Zakharov-Kuznetsov-Benjamin-Bona-Mahony (ZKBBM) equation in mathematical physics with a source to illustrate the validity a...
متن کاملModified Wavelet Method for Solving Two-dimensional Coupled System of Evolution Equations
As two-dimensional coupled system of nonlinear partial differential equations does not give enough smooth solutions, when approximated by linear, quadratic and cubic polynomials and gives poor convergence or no convergence. In such cases, approximation by zero degree polynomials like Haar wavelets (continuous functions with finite jumps) are most suitable and reliable. Therefore, modified numer...
متن کامل